基本信息:
王康佳,男,九三学社社员,工学博士,副教授,77779193永利硕士生导师
主要研究方向:三维集成电路热设计、分数阶电路系统、分数阶微积分、孤子理论与可积系统、变分原理等领域研究。
教育及工作经历:
就读于华南师范大学微电子学与固体电子学专业获得工学博士学位。
教学情况:
主要承担《FPGA原理及应用》等专业课程的教学任务。
科研项目/课题:
1.河南省高等学校重点科研项目(22A140006), 5万,2022.1-2023.12,已结项,主持;
2.青年创新探索性基金(NSFRF210324),6万,2021.1-2022.12,已结项,主持;
3.77779193永利官网博士基金(B2018-40),8万,2017.9-2023.9,在研,主持;
4.国家自然科学基金面上项目 《基于In(Ga)As多层耦合表面量子点的丙酮气敏传感器研究》(62173128)58万,2022.1-2025.12,在研,参与。
代表性论文:
以第一及通信作者发表SCI论文130余篇(一区10篇,二区18篇),其中ESI高被引论文15篇,ESI热点论文2篇,论文被引3000余次,当前个人H-Index指数为30。2021年、2022年、2023年连续三年入选斯坦福大学评选的全球排名前2%顶尖科学家榜单。现担任SCI期刊《Advances in Mathematical Physics》(中科院4区)、《Mathematical Problems in Engineering》(中科院4区)和《Discrete Dynamics in Nature and Society》(中科院4区)编委,以及SCI期刊《Fractals:Complex Geometry, Patterns, and Scaling in Nature and Society》(中科院2区),《Fractal and Fractional》(中科院3区),《Frontiers in Physics》(中科院3区)和《Frontiers in Applied Mathematics and Statistics》(中科院4区)期刊客座主编。为Nonlinear Dynamics、Fractals、Fractal and Fractional、Results in physics、Mathematical Methods in the Applied Sciences、European Physical Journal Plus、Alexandria Engineering Journal、Optical and Quantum Electronics等SCI期刊审稿人。代表论文如下:
1.Wang K J, The generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions, Nonlinear Dynamics, 2024, 112, 7309-7324. (中科院2区)
2.Wang K J, Feng Shi, Li S, Xu P, Dynamics of resonant soliton, novel hybrid interaction, complex N-soliton and the abundant wave solutions to the (2+1)-dimensional Boussinesq equation, Alexandria Engineering Journal, 2024, 105: 485-495. (中科院2区)
3.Wang K J,Soliton molecules,Y-type soliton and complex multiple soliton solutions to the extended (3+1)-dimensional Jimbo-Miwa equation, Physica Scripta, 2024, 99(1): 015254.
4.Wang K J, Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dynamics, Nonlinear Dyn 2023, 111: 16427-16439. (中科院2区,高被引)
5.Wang K J, Liu J H, On abundant wave structures of the unsteady korteweg-de vries equation arising in shallow water, Journal of Ocean Engineering and Science, 2023,8, (6): 595-601. (中科院1区Top)
6.Wang K J, Generalized variational structure of the fractal modified KdV-Zakharov-Kuznetsov equation, Fractals, 2023, 31, (7): 2350084. (中科院2区)
7.Wang K J,On the generalized variational principle of the fractal Gardner equation, Fractals, 2023,31 (9):2350120. (中科院2区)
8.Wang K J, Liu J H, Si J, Shi F, Guo-Dong Wang, N-soliton, breather, lump solutions and diverse travelling wave solutions of the fractional (2+1)-dimensional Boussinesq equation, Fractals, 2023, 31 (3): 2350023. (中科院2区)
9.Wang K. J,Dynamics of breather, multi-wave, interaction and other wave solutions to the new (3+1)-dimensional integrable fourth-order equation for shallow water waves, International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, (11): 3734-3747.
10.Wang K J, Liu J H, A fast insight into the nonlinear oscillators with coordinate-dependent mass, Results in physics, 2022, 39: 105759. (中科院2区,高被引论文)
11.Wang K J,Shi F, Liu J H, A fractal modification of the Sharma-Tasso-Olver equation and its fractal generalized variational principle, Fractals, 2022, 30(6): 2250121. (中科院2区,高被引论文)
12.Wang K J, The fractal active Low-pass filter within the local fractional derivative on the Cantor set, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2023, 42 (6): 1396-1407. (高被引论文)
13.Wang K J,Generalized variational principles and new abundant wave structures of the fractal coupled Boussinesq equation, Fractals, 2022, 30(7): 2250152. (中科院一区Top)
14.Wang K J. On a High-pass filter described by local fractional derivative, Fractals, 28(3) (2020), 2050031. (中科院一区Top,高被引论文)
15.Wang K J, Wang G D. Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics,Fractals,2021, (29) 3: 2150075. (一区top,高被引论文)
16.Wang K J, Wang G D, Zhu H W. A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water, Fractals, 2021,29( 5): 2150122. (中科院一区Top,高被引论文)
17.Wang K J, Wang G D. Periodic solution of the (2+1)-dimensional nonlinear electrical transmission line equation via variational method, Results in physic,2021(20):103666. (中科院二区,高被引论文)
18.Wang K J, Liu J H, On the zero state-response of the ʒ-order R-C circuit within the local fractional calculus, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2023, 42 (6): 1641-1653.
19.Wang K J. et al., The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative, Alexandria Eng. J. 2020, 59(6): 4669-4675.
20.Wang K J. et al., A a-order R-L high-pass filter modeled by local fractional derivative, Alexandria Engineering Journal, 2020,59 (5) pp. 3244-3248.